Voltage Sensor Movement and cAMP Binding Allosterically Regulate an Inherently Voltage-independent Closed−Open Transition in HCN Channels

نویسندگان

  • Shan Chen
  • Jing Wang
  • Lei Zhou
  • Meena S. George
  • Steven A. Siegelbaum
چکیده

The hyperpolarization-activated cyclic nucleotide-modulated cation (HCN) channels are regulated by both membrane voltage and the binding of cyclic nucleotides to a cytoplasmic, C-terminal cyclic nucleotide-binding domain (CNBD). Here we have addressed the mechanism of this dual regulation for HCN2 channels, which activate with slow kinetics that are strongly accelerated by cAMP, and HCN1 channels, which activate with rapid kinetics that are weakly enhanced by cAMP. Surprisingly, we find that the rate of opening of HCN2 approaches a maximal value with extreme hyperpolarization, indicating the presence of a voltage-independent kinetic step in the opening process that becomes rate limiting at very negative potentials. cAMP binding enhances the rate of this voltage-independent opening step. In contrast, the rate of opening of HCN1 is much greater than that of HCN2 and does not saturate with increasing hyperpolarization over the voltage range examined. Domain-swapping chimeras between HCN1 and HCN2 reveal that the S4-S6 transmembrane region largely determines the limiting rate in opening kinetics at negative voltages. Measurements of HCN2 tail current kinetics also reveal a voltage-independent closing step that becomes rate limiting at positive voltages; the rate of this closing step is decreased by cAMP. These results are consistent with a cyclic allosteric model in which a closed-open transition that is inherently voltage independent is subject to dual allosteric regulation by voltage sensor movement and cAMP binding. This mechanism accounts for several properties of HCN channel gating and has potentially important physiological implications.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integrated Allosteric Model of Voltage Gating of Hcn Channels

Hyperpolarization-activated (pacemaker) channels are dually gated by negative voltage and intracellular cAMP. Kinetics of native cardiac f-channels are not compatible with HH gating, and require closed/open multistate models. We verified that members of the HCN channel family (mHCN1, hHCN2, hHCN4) also have properties not complying with HH gating, such as sigmoidal activation and deactivation, ...

متن کامل

Alanine scanning of the S6 segment reveals a unique and cAMP-sensitive association between the pore and voltage-dependent opening in HCN channels.

Hyperpolarization-activated cyclic nucleotide-modulated (HCN) channels resemble Shaker K+ channels in structure and function. In both, changes in membrane voltage produce directionally similar movement of positively charged residues in the voltage sensor to alter the pore structure at the intracellular side and gate ion flow. However, HCNs open when hyperpolarized, whereas Shaker opens when dep...

متن کامل

Charge movement in gating-locked HCN channels reveals weak coupling of voltage sensors and gate

HCN (hyperpolarization-activated cyclic nucleotide gated) pacemaker channels have an architecture similar to that of voltage-gated K(+) channels, but they open with the opposite voltage dependence. HCN channels use essentially the same positively charged voltage sensors and intracellular activation gates as K(+) channels, but apparently these two components are coupled differently. In this stud...

متن کامل

Activation gating in HCN2 channels

Hyperpolarization-activated cyclic nucleotide-modulated (HCN) channels control electrical rhythmicity in specialized brain and heart cells. We quantitatively analysed voltage-dependent activation of homotetrameric HCN2 channels and its modulation by the second messenger cAMP using global fits of hidden Markovian models to complex experimental data. We show that voltage-dependent activation is e...

متن کامل

Structures of the Human HCN1 Hyperpolarization-Activated Channel

Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels underlie the control of rhythmic activity in cardiac and neuronal pacemaker cells. In HCN, the polarity of voltage dependence is uniquely reversed. Intracellular cyclic adenosine monophosphate (cAMP) levels tune the voltage response, enabling sympathetic nerve stimulation to increase the heart rate. We present cryo-electron micr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of General Physiology

دوره 129  شماره 

صفحات  -

تاریخ انتشار 2007